
Datalight Software
Development Toolkit

 2.0

User’s Guide

Printed: April, 2000

Datalight Software Development Toolkit

Copyright © 1999 - 2000, Datalight, Inc.

All Rights Reserved

Datalight, Inc. assumes no liability for the use or misuse of this software. Liability for any warranties
implied or stated is limited to the original purchaser only and to the recording medium (disk) only, not
the information encoded on it.

THE SOFTWARE DESCRIBED HEREIN, TOGETHER WITH THIS DOCUMENT, ARE
FURNISHED UNDER A LICENSE AGREEMENT AND MAY BE USED OR COPIED ONLY IN
ACCORDANCE WITH THE TERMS OF THAT AGREEMENT.

Datalight is a registered trademark of Datalight, Inc.
ROM-DOS and FlashFX are trademarks of Datalight, Inc.
Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

Part Number: 3000-0200-0163

Contents
Chapter 1, About the SDTK ...1

SDTK Features ..1
About this Manual..1
Minimum Development System Requirements ...1
Recommended Reading..2
Requesting Technical Assistance..2

Chapter 2, Installing the SDTK..3
Installation on a Win95/Win98/WinNT System ..3
C/C++ Compiler Installation Notes...3

Chapter 3, SDTK Structure..5
Files and Directory Structure..5
SDTK Contents..5
Help Files ..6

Chapter 4, Datalight Tools Reference ..7
BIN2C ...7
CLEANUP...7
COPYLAST ..8
COUNT...8
CWD ...9
DELSAME ..9
DIRCMP..9
DIRLST...10
DOSMON..10
DUMPCD..11
DUMPMEM ..11
EMPTYDIR...12
FNRAND...12
GETRAMDR...12
HEX2BIN..13
INTIMER ..13
LOC ..13

Standard Location Files ...14
Floppy Disk Location..14
ROM Location with BIOS Extension...15
ROM Location with BIOS Jump..15

MAKEDIR ..16
MKTREE ..16
NED (Editor) Program ...16

Starting the Editor ...17
Basic Editor Operation ..17
Remote Editing ...18
Troubleshooting Remote NED...19
Default Hot Keys...19

PROMERGE ...21
PROTO..21

ii

READMEM ..22
RECURSE...22
RESTCMOS..23
SAVE..23
SAVECMOS ...24
SAVEENV ..24
SETX ..24
SHOWERR ...25
SPLIT..25
TIMEROFF ...26
TIMERON...26

Chapter 5, Pardigm Tools Reference ...27
PDCONVRT ...27

Chapter 6, Known Issues ..29
Datalight Tools Issues ..29
Borland C/C++ Issues ..29

Glossary ..33

Chapter 1, About the SDTK

As the industry continues to advance with larger and more powerful products for desktop
environments, support for outdated environments used with embedded systems has become more
difficult to locate, purchase, and license. The Datalight Software Development Toolkit (SDTK) is
provided to support ROM-DOS and other Datalight products. It provides a development
environment that includes all of the tools necessary to complete configuration and deployment of
Datalight products during the OEM's product development phase.

SDTK Features
• Includes a full Borland C/C++ compiler, linker, tools, examples, and help files.

• ANSI C and C++ runtime libraries.

• Includes an assembler that supports the 8086 through 586 class machine language.

• Includes locate tools to create BIOS extensions, and ROM-able applications.

• Includes a library of DOS development and debugging tools developed by Datalight.

Note: The SDTK is a set of tools developed by Datalight for use with Datalight software only. It
is not intended to be a complete development package from a third party. Only those third-party
tools required to configure, develop, and deploy Datalight software are included in the SDTK.

 About this Manual
This manual is provided to assist you in using the Software Development Toolkit (SDTK) to
develop with Datalight products. The information contained in this manual is essential to using
these kits and it is strongly recommended that you read the entire contents. Read this manual at
least once before beginning the task of installing the SDTK. Refer to the “Contents” section at the
beginning of the manual for an overview of the manual’s contents and organization.

Refer to Chapter 4, Datalight Tools Reference for details regarding the usage of Datalight tools.
Consult the electronic help files for Borland C and TASM tools. The level of coverage provided
in this manual assumes you are proficient in developing software in C.

 Minimum Development System Requirements
The minimum development system requirements for using the SDTK:

• Windows 95, Windows 98, or Windows NT.

• 450MB of disk space for a full installation of the kit (100MB for command line tools only).

• 16MB of RAM.

2 Chapter 1, About the SDTK

Recommended Reading
These publications may provide helpful information:

• Writing Solid Code by Steve Maguire, Microsoft Press

• PC Interrupts by Ralf Brown and Jim Kyle, Addison-Wesley Publishing Company

Requesting Technical Assistance
If you encounter a problem or feel you have encountered an error in this development kit, please
do the following:

• Attempt to resolve the problem with reference to this manual. You can use the table of
contents at the front of the manual and the index at the back of the manual to assist in
locating information.

• Check the README files for any late-breaking changes or additions to the product not
covered in the manual.

You can contact Datalight:

• via email at support@datalight.com

• via the web at www.datalight.com

In any communication with Datalight, be sure to include the version information from the original
installation disk.

Chapter 2, Installing the SDTK

This chapter describes installation of the SDTK, its contents, and structure.

Installation on a Win95/Win98/WinNT System
To install the kit, place the distribution CD-ROM in the CD drive and run the installation utility as
follows:
D:SETUP

where D: is the designation of the CD drive.

The installation program creates the directories and copies all the necessary files and sub-
directories to the hard disk during the installation procedure. The install path can be changed, but
the default path is recommended to ensure reliable use and compatibility with other Datalight
products. When the installation process is complete, review the README.TXT file to learn of
any last minute changes or updates that were not available at the time this manual was printed.

The installation program will install the minimum command line tools by default. To install only
the command line tools, leave the boxes in the “Select Components” Window unchecked.

If you choose to install the Borland Integrated Development Environment (IDE), you will be
prompted to modify system initialization files and registry. To use the C/C++ tools for Windows,
allow the install program to modify both, and install the Borland Database Engine to the default
path. Verify that config.sys contains the command FILES=40 (or larger) and reboot your system
for registry and system file changes to take effect.

C/C++ Compiler Installation Notes
If you install the IDE and you install the SDTK to a non-default installation path, the Borland
Database Engine (BDE) configuration file, IDAPI.CFG should be updated. To do this, run
BDECFG32.EXE from the BDE install directory (C:\PROGRAM FILES\BORLAND\COMMON
FILES\BDE by default). Select the “Aliases” tab, and modify the “PATH” parameter of the
“DIVEPLAN” alias with the proper path. For more information on using this utility, refer to the
WinHelp file, BDECFG32.HLP, in the BDE install directory.

To update from Version 4.5 or earlier, you need to delete the old version of Borland C++ from
your system before installing Version 5.02. You also need to delete all references to outdated help
files from your WINHELP.INI file in your WINDOWS directory. Also, if you have WinRun in
your startup group, unload it before installing Borland C++ Version 5.02.

4 Chapter 2, Installing the SDTK

Chapter 3, SDTK Structure

This chapter describes the components of the SDTK.

Files and Directory Structure
The setup utility places the development kit in the DEVTOOLS directory. The DEVTOOLS
directory contains the sub-directories in Table 1. Note that the Borland Database Engine is
installed to C:\Program Files\Borland\Common Files\BDE to overwrite any previous copies.

Table 1. Directory Contents of the Development Kit.

Sub-directory Contents

BC52 Contains BCC 5.02 references.

BC52\BDE32 Contains the 32-bit Borland Database Engine.

BC52\BGI Contains the Borland Graphics Interface Library.

BC52\DOC Contains Borland reference text files.

BC52\EXAMPLES Contains C and C++ program examples.

BC52\EXPERT Contains the Borland Window Objects library.

BC52\HELP Contains BCC 5.02 help files.

BC52\SCRIPT Contains Borland C script examples.

BC52\SDKTOOLS Contains various BCC 5.02 SDK tools included, but not used for developing
Datalight products.

BC52\SOURCE Contains source to various BCC 5.02 libraries.

BIN Contains the Borland and Datalight tools and utilities for product development.

DOCS Contains this manual, README.TXT, HISTORY.TXT, the TASM help file,
and other SDTK documents.

INCLUDE Contains the C/C++ include tree.

LIB Contains the C/C++ lib tree.

To reduce any confusion between the OEM engineer using the SDTK and Datalight engineers, the
directory structure of the environment after installation is as identical as possible to that used
internally by Datalight.

SDTK Contents
Borland and Datalight tools have been integrated into the SDTK. Borland C/C++ 5.02 is installed
as it would be from the Borland CD, with some configuration for the Datalight root (.cfg files
modified). Borland Turbo Assembler 4.1 is also included in the SDTK. Only TASM.EXE and
TOUCH.EXE are included from TASM 4.1.

6 Chapter 3, SDTK Structure

Help Files
For help with TASM, refer to the “Borland TASM Online Help” shortcut in the
“Datalight\Software Development Toolkit” Start Menu folder.

For help with BCC 5.02, refer to the “BCC 5.02 Help” folder in the “Datalight\Software
Development Toolkit” Start Menu folder.

For help with Datalight tools, refer to the next chapter or the electronic version of the manual,
which is “SDTK Manual” in the “Datalight\Software Development Toolkit” Start Menu folder.

Chapter 4, Datalight Tools Reference

This chapter describes the usage of the Datalight tools included in the SDTK.

BIN2C
BIN2C converts a binary file to an initialized C data declaration.

Syntax
 BIN2C binfile [outfile]

Options
 binfile is the name of the binary file to be converted.

 outfile is optional. If an outfile name is provided, the converted file will be given that name. If the
outfile argument is omitted, the output will be stored in a file with the same name as the binfile but
with the .c extension.

Examples
BIN2C test.exe

 This example will create a converted file called TEST.C.
BIN2C test.exe myprog.c

 This example will create a converted file called MYPROG.C.

CLEANUP
CLEANUP provides an automated way to clean unneeded files from a directory.

Syntax
 CLEANUP mode

Remarks
 Care should be taken when using this utility to ensure that the contents of the data file are correct
before trying to clean out a directory. This utility is useful when compiling source code to allow
easy removal of object files, map files, and other intermediate process files.

Options
 The 'record' mode records a list of files in the current directory into a file named CLEANUP.DAT.
This file is stored in the current directory.

 The 'clean' mode reads the data file CLEANUP.DAT and deletes the files in the current directory
that are not listed in the file. If CLEANUP.DAT is not present, the program will terminate without
deleting any files.

Examples
CLEANUP record

 Creates file CLEANUP.DAT in the current directory.
CLEANUP clean

 Reads file CLEANUP.DAT and deletes all files not listed from the current directory.

8 Chapter 4, Datalight Tools Reference

COPYLAST
COPYLAST compares two files and copies the most recently modified file to the target
destination.

Syntax
 COPYLAST [file1] [file2] [target]

Options
 file1 and file2 can share the same file name, or have different names. The file designation can
include complete path information.

 The target name can also include path information and must be provided. The copy will not be
made if this argument is omitted.

Examples
COPYLAST myfile testfile save\test1

 Compares the date and time stamps of myfile and testfile located in the current directory
and copies the most recently modified file to the filename test1 in the save directory.

COPYLAST test\first.exe test2\second.exe final.exe

 Compares the date and time stamps of first.exe in the test directory and second.exe
located in the test2 directory and copies the most recently modified file to the filename
final.exe in the current directory.

COUNT
COUNT is an incremental counter program.

Syntax
 COUNT [zero]

Remarks
 This program creates a file named COUNT.DAT. This file contains an ASCII number. The
number is read back in by COUNT and a batch file is created setting the environment variable
‘COUNT’ to the number that is in the COUNT.DAT file. This number increments each time
COUNT is run. The same number that is placed in COUNT.DAT and in SETCOUNT.BAT is
returned by COUNT as the errorlevel.

Options
 By default, the count starts at 1. 'zero' indicates that the count should start at 0.

Examples
COUNT

 Increment count value in COUNT.DAT and SETCOUNT.BAT. Both files are found in the current
directory.

COUNT zero
SETCOUNT.BAT

 Sets the count value in COUNT.DAT and SETCOUNT.BAT to 0. Sets the environment variable,
COUNT, to 0.

Chapter 4, Datalight Tools Reference 9

CWD
CWD redirects output to a batch file to set an environment variable equal to the complete path
name of the current working directory.

Syntax
 CWD [environment_variable_name]

Options
 If the environment variable name is omitted, the variable name “CWD” will be used.

Examples
C:\testing>CWD curdir

 Sends the output string “set curdir=c:\testing” that could be trapped and used in a batch file.

DELSAME
DELSAME compares files in two directories and deletes all files in the current directory that are
identical in filename, date/time, and size to those located in the other directory.

Syntax
 DELSAME dirname

Remarks
 This utility is useful when merging files from several directories. Only the filename, date/time, and
size are compared. File contents are not compared.

Options
 The dirname argument designates the directory whose contents should be compared to the current
directory’s contents.

Examples
DELSAME C:\TEST2

 Compare the files in C:\TEST2 and current directory and delete all files in the current directory
that are duplicated in the C:\TEST2 directory.

DIRCMP
DIRCMP compares two directories, optionally comparing the file contents. DIRCMP
displays/lists the files that differ, and in a format that can be used as a list file.

Syntax
 DIRCMP FirstDir SecondDir [/f][/s][/v]

Remarks
 DIRCMP returns 0 (zero) if the directories are identical.

Options
 /f directs DIRCMP to compare file contents as well as dates, times, and sizes.

 /s allows DIRCMP to recurse into subdirectories.

 /v indicates verbose mode and will display more information to the screen.

10 Chapter 4, Datalight Tools Reference

Examples
DIRCMP test test2

 Compares the files found in the directory test with the files in test2 and reports those with the
same filename but different file dates, times, or sizes.

DIRCMP /f /v test test2

 Compares the files found in the directory test with the files in test2 and reports those that are
different in any way, including file contents. The report will be done in verbose mode with
additional information, such as:

Error: date/time is different in “test2\file1”!
Error File “test2\file5 not found!

2 Errors found!

DIRLST
DIRLST generates a complete directory listing of the current directory, including path
information, and stores it in a list file.

Syntax
 DIRLST

Remarks
 The directory listing will be directed to a file called DIRLST.LST and stored in the current
directory.

Examples
C:\test>DIRLST

 The file DIRLST.LST is created in the current “c:\test” directory, listing the files found within that
directory.

DOSMON
DOSMON allows you to view and edit physical memory contents, PCI address space, and I/O
address space.

Syntax
 DOSMON

Remarks
 DOSMON stays resident until user terminates the program with the “Q” option The only flash
memory currently supported by DOSMON is AM29F002 and fully compatible parts. DOSMON
only runs in DOS real mode.

Options
 Entering “?” after starting the DOSMON program provides complete instructions.

Examples
DOSMON

 Starts the DOSMON program. The DOSMON command line prompt remains until the program is
terminated by the user. At which point control returns to the DOS prompt.

Chapter 4, Datalight Tools Reference 11

DUMPCD
DUMPCD displays CD volume descriptors, sectors, and other information pertaining to the CD
and drive.

Syntax
 DUMPCD [Bn [,m]] [Un] [Sn[,m]] [V] [L]

Remarks
 With any option, DUMPCD displays the version of the MSCDEX driver loaded, the number of CD
drives supported and the first CD-ROM drive letter.

Options
 Bn,m = Binary dump, starting at sector n for m sectors. Output is to file DUMPCD.DAT.

 Un = Use CD drive unit number n.

 Sn,m = Hex dump, starting at sector n for m sectors.

 V = Display volume descriptor table.

 L = dump CD-ROM drive letter list.

Examples
DUMPCD B100,10

 Perform a binary dump of 10 sectors, starting at sector 100. Output will be directed to file
DUMPCD.DAT in the current directory.

DUMPCD L

 Display complete CD-ROM drive letter list.

DUMPMEM
DUMPMEM is a memory display utility.

Syntax
 DUMPMEM [-r] address length

Remarks
 The CPU must be running in DOS real mode in order for DUMPMEM to work.

Options
 –r indicates that a raw dump should be done.

 address is the hexadecimal physical address at which to begin the dump.

 length address is the hexadecimal number of bytes to display.

Examples
DUMPEM 40 20

 Displays 20h bytes (32 bytes) of the system memory starting at 4:0h:
DUMP32 - Datalight Memory Dump Utility - Version 1.11.48

Copyright (C) 1999-2000 Datalight, Inc.

00000040: 44 15 00 c0 4d f8 00 f0 - 41 f8 00 f0 2f 18 89 00 D...M...A.../...
00000050: 39 e7 00 f0 a0 00 09 04 - 2e e8 00 f0 d2 ef 00 f0 9...............

12 Chapter 4, Datalight Tools Reference

EMPTYDIR
EMPTYDIR checks to see if the current directory is empty.

Syntax
 EMPTYDIR

Remarks
 EMPTYDIR returns a zero (0) error level if the directory is empty, that is there are no files or
subdirectories beyond “.” and “..”. EMPTYDIR returns a one (1) is returned the directory is not
empty.

Options
 None

FNRAND
FNRAND adds random characters to a filename until the filename reaches the maximum of eight
characters.

Syntax
 FNRAND [-Q] [drive:][path]filename

Remarks
 FNRAND returns an errorlevel depending on what has occurred:

 0 = rename has occurred.

 1 = help was requested.

 2 = specified file was not found.

 3 = an invalid parameter was specified.

 4 = an invalid number of parameters was specified.

 5 = unable to rename file for one of the following reason:

- filename is already eight characters

- no filename was specified on the command line

- a wildcard was specified in the filename

Options
 -Q indicates quiet mode in which the utility name and version will not be displayed to the screen.

Examples
FNRAND TST1

 Add random characters to filename TST1 to create an eight-character filename. An example new
filename is TST1HGYT.

GETRAMDR
GETRAMDR locates the drive letter of a Datalight VDISK.SYS RAM drive and places it into an
environment variable.

Chapter 4, Datalight Tools Reference 13

Syntax
 GETRAMDR

Remarks
 The GETRAMDR program will return errorlevel zero (0) if no errors occurred (signature DL RAM
DISK found), or errorlevel one (1) if there was an error. If there are no errors, the environment
contains a variable: RAMDRIVE=drive letter. This variable can be used in batch files, for
example: COPY *.* %RAMDRIVE%\SUBDIR

Examples
GETRAMDR

 Locate the drive letter for an installed VDISK.SYS RAM drive and store it in the environment.

HEX2BIN
HEX2BIN converts a hexadecimal-format file to a binary format file.

Syntax
 HEX2BIN filename outfile

Options
 The filename must be an Intel hex file.

 The destination filename, outfile, must be provided.

Examples
HEX2BIN mytest.hex newtest.bin

 Converts the file mytest.hex to a binary format file called newtest.bin.

INTIMER
INTIMER is a resident program used to profile interrupt 21 function calls.

Syntax
 INTIMER

Remarks
 This program is used in conjunction with TIMERON and TIMEROFF. INTIMER must be started
before running TIMERON or TIMEROFF.

Examples
INTIMER

 Starts the INTIMER program.

LOC
LOC translates your application .EXE program into a fully-located application that can be placed
in and run from ROM. Run LOC.EXE with no command line options for a quick help screen.

Syntax
 LOC [options] @loc_file

14 Chapter 4, Datalight Tools Reference

Remarks
 The locator requires an executable (.EXE) file, a map (.MAP) file and a location (.LOC) file to
produce an output file suitable for a PROM programmer. Also, the executable file must have
startup code that can be placed in and run from ROM. The locator can produce Intel hex files and
binary images.

Options
 Options to the locator may appear on the location command line or may be placed in the beginning
of a location command file.

 The most common locator command line options are described in the following table. These
options may also be placed in the location file.

Option Description

/b Specify the /b BIOS extension option during the location process when creating a BIOS
extension version of a program. This option checksums the first 2KB of your program
and adds a fix-up byte into the BIOS extension area so a BIOS will checksum it to be
zero. The BIOS calculates a checksum of the first 2KB to be zero.

/i Specify the /i option when your PROM programmer takes image files as input. If the /i
option is not used, LOC produces Intel hex output files.

/s Specify the /s split option on the locator command line to create two files instead of one.
When creating ROMs for a 186, or 286 system, the PROMs must be split into even and
odd PROMs. The files have extensions of .EVN and .ODD.

/e Specify the /e option to prevent extended addresses from being placed in your Intel hex
files.

Standard Location Files
Using the Datalight ROM-DOS operating system as an example, there are usually only three ways
to locate ROM-DOS. You may locate ROM-DOS:

• So that it can boot from a floppy disk

• To boot out of ROM, but from a standard BIOS via BIOS extension

• To start directly from a BIOS that jumps to ROM-DOS.

The locator requires a location file that describes the segment location of any program. The
segments and classes listed in the first portion of the .MAP file provide a framework and reference
for creating the .LOC instruction file. The following sections describe the location file for the
three ways to locate ROM-DOS.

Floppy Disk Location
When creating a version of ROM-DOS that boots from a floppy or hard disk, all ROM-DOS
kernel code and data is loaded starting at segment 70 or address 0070:0. The following location
command file will locate ROM-DOS.EXE starting at segment 70.
/inf # Image file No Fill
rom-dos, # Name of EXE file,
rom-dos, # Name of MAP file
rom-dos, # Absolute MAP file
BIOSEXT @ 0xF000 +

Chapter 4, Datalight Tools Reference 15

CODE @ $ +
DEVDATA @ $ (0x70) +
DATA @ $ ($) +
BSS @ ($) +
HEAP @ ($) ,
40KB ROM @ 0xF000 +
10KB RAM @ 0x70

Using a text editor, you can create and save this location file on disk under the name of RD-
FLOP.LOC. For example, to use the above RD-FLOP.LOC file, enter the following on the
command line:
C:\>LOC @RD-FLOP
C:\>COPY ROM-DOS.IMG ROM-DOS.SYS
C:\>SYS A:

ROM Location with BIOS Extension
ROM-DOS can be booted from ROM using a BIOS extension. Creating a BIOS extension
requires a small change when assembling the SYSGEN.ASM file and a different location file.
The location file in the following example locates ROM-DOS at E000:0, a typical address for a
BIOS extension, and also creates an Intel hex file named ROM-DOS.HEX.

To make a ROM-DOS BIOS extension bootable, the variable BEXT must be defined. BEXT is
defined on the TASM command line using the option /dBEXT as shown in the following example.
C:\>TASM /Mx /dBEXT=1 SYSGEN.ASM;

The BIOS extension must be located in the address range of C000:0 to EFFF:0.
/B # Fixup BIOS Extension
rom-dos, # Name of EXE file,
rom-dos, # Name of MAP file
rom-dos, # Absolute MAP file
BIOSEXT @ 0xE000 +
CODE @ $ +
DEVDATA @ $ (0x70) +
DATA @ $ ($) +
BSS @ ($) +
HEAP @ ($) ,
40KB ROM @ 0xE000 +
32KB RAM @ 0x70

After creating a ROM-DOS that boots from BIOS extension, remember to create a checksum byte.
The whole BIOS extension (which is actually defined to be 2KB) must checksum to zero. Some
BIOSs do not rely on this checksum, but it is good practice to ensure that this checksum is always
valid. The /B option in the LOC file causes LOC to place the checksum in the BIOS extension for
you.

ROM Location with BIOS Jump
ROM-DOS can be booted from ROM using a direct jump from the BIOS or other calling program.
The location file displayed below locates ROM-DOS at F000:0. It creates 32KB split image files
named ROM-DOS.EVN and ROM-DOS.ODD.
/I # Binary (Image) file requested

16 Chapter 4, Datalight Tools Reference

/S # Create split output files
rom-dos, # Name of EXE file,
rom-dos, # Name of MAP file
rom-dos, # Absolute MAP file
BIOSEXT @ 0xF000 +
CODE @ $ +
DEVDATA @ $ (0x70) +
DATA @ $ ($) +
BSS @ ($) +
HEAP @ ($) ,
64K ROM @ 0xF000 +
32K RAM @ 0x70

MAKEDIR
MAKEDIR creates a directory in the same manner that the DOS MKDIR command does, however
MAKEDIR returns error codes that can be trapped for use within other processes.

Syntax
 MAKEDIR dirname

Remarks
 The directory is created using the standard Int21, function 39 process.

Options
 A directory will only be created if dirname is provided.

Examples
MAKEDIR newtests

 Create a directory called newtests.

MKTREE
MKTREE creates a multiple level directory.

Syntax
 MKTREE path

Options
 path is the complete path tree to create.

Examples
C:\MKTREE testing\new\writing\source

 Creates the directory tree c:\testing\new\writing\source.

NED (Editor) Program
The NED editor is a menu-based text editor available for use with DOS or Windows. This editor
is similar to other desktop editors but has special functions designed for use in editing C-source
and assembly code.

Chapter 4, Datalight Tools Reference 17

Starting the Editor
To start the editor, enter
NED [filename]

NED may be initiated with or without filename arguments. Wildcard file specifications are
allowed.

Up to ten files can be entered on the command line. If NED is run without arguments, it loads all
files accessed during the last editing session, returning to the exact position in the file. You can
switch between the open files.

You can also enter
NED @errfile

where errfile is the name of your compiler error output file. NED loads all files that had errors
and allows you to move between errors.

Once NED is running, you may load files into memory by using the File/Open menu command.
File/Reload replaces the current file with a new file or reloads a new copy of the same file.
File/Reload confirms before replacing an unsaved file.

Basic Editor Operation
NED uses the standard Windows interface for cut, copy, and paste operations. Del and Shift+Del
both move the selected block to the clipboard. There is no true undo command, but Ctrl+V or
Shift+Ins may be used to paste the clipboard contents to the current cursor position. Table 1 lists
the all the default shortcut keys.

If a search string is all lowercase, NED treats it as a case-insensitive search. If a search string
contains any uppercase letters, it is case sensitive. The replacement string is inserted exactly as
entered. Repeating a Search command repeats the last Forward or Backward Search operation, not
the last Replace operation.

There is one bookmark for all files. Once the bookmark is set, going to the bookmark returns you
to the file and position where you set it.

The Indent and Remove-indent (referred to as Undent in the Options/Do Command) commands
work on tabs. Indent inserts a tab at the beginning of the current line, or if a block is active, at the
beginning of each line in the block. Remove-indent removes the first tab from the current line or
from each line in the block. If there are no tabs, Remove-indent has no effect.

Toggle case inverts the case of the current character if no block is active. If a block is active,
Toggle case sets the entire block to uppercase if the first character was lower and to lowercase if
the first character was uppercase.

Tabs are currently set to 3 for .C, .H, .CPP, .HPP, and .T files. They are set to 8 for all other files.
Tabs are expanded to spaces.

File/Print prints the current block if there is one, otherwise it prints the current file. NED prompts
for a printing device, which may be a filename.

18 Chapter 4, Datalight Tools Reference

The Options/Do Command is intended primarily for debugging. This command allows you to
execute any editor command by choosing it from a menu list.

The macro commands (Record Macro/Play Macro) allow you to define a sequence of keystrokes
that can be repeated consistently. Select Record Macro (ALT=), enter the keystrokes, then press
ALT= again. The macro sequence can be played by selecting Play Macro or by pressing ALT-.
Keyboard bindings are saved in NED.CFG in the same directory as NED.EXE. NED.CFG also
contains the list of active files and positions.

If you record and play a recursive macro, it plays continuously.

If you press an invalid key on a menu, NED operates as if you pressed enter.

If your system runs out of memory, such as when you have more than 300KB of files open, NED
exits to DOS.

Remote Editing
NED will operate as a full-screen editor, even through a serial port, using ANSI Escape codes.
Any communication program capable of emulating an ANSI terminal will work with NED in
remote mode.

NED automatically detects if the console is redirected through a serial port, either via CTTY, or
when using the Datalight BIOS with a serial console. NED does not support ANSI key codes, so
the use of PC function keys and standard PC cursor keys is supported through control keys. To
use the special control keys, copy the NEDREMOT.CFG to the name NED.CFG in the same
directory that NED.EXE is run from on the target system. This NED configuration file was
created using the Option Map a key... function, and can be modified in the same manner.

Always use the Esc key to get to the menus. Use Ctrl-K to enable/disable blocking mode when
selecting text. The remote key mapping is provided in the following list.

Table 1. Default shortcut keys

Key Function

Ctrl-A Left arrow

Ctrl-B Find backward

Ctrl-C Copy to clipboard

Ctrl-D Go to mark

Ctrl-E Delete to end of line

Ctrl-F Find forward

Ctrl-G Go to line number

Ctrl-H Delete previous character (same as Backspace)

Ctrl-I Insert tab (same as Tab)

Ctrl-J Page down

Ctrl-K Toggle block mode (for cutting to clipboard)

Chapter 4, Datalight Tools Reference 19

Key Function

Ctrl-L Delete the entire line

Ctrl-M Insert return (same as Enter)

Ctrl-N Toggle insert/overwrite mode

Ctrl-O Open a file

Ctrl-P Toggle through previous three positions

Ctrl-Q Home

Ctrl-R Search/Replace

Ctrl-S Right arrow

Ctrl-T Top of document

Ctrl-U Page up

Ctrl-V Insert clipboard at cursor

Ctrl-W Up arrow

Ctrl-X Delete to clipboard

Ctrl-Y End of document

Ctrl-Z Down arrow

Ctrl-[Menu/Cancel operation (same as Esc)

Ctrl-] Brace match

Ctrl-\ Do a command (opens a menu with all NED commands)

Troubleshooting Remote NED
If nothing appears on the terminal screen, check the baud rate of the terminal program, check the
serial cable (should normally be a null-modem cable), and check that the terminal program is set
to emulate ANSI escape codes.

In some cases, it is possible for the remote auto-detect to fail. In this case, run the program
NEDREMOT prior to running NED. NEDREMOT sets a word at 40:E8h to inform NED to
operate remotely.

Default Hot Keys
Many of the editor commands can be accessed directly by pressing key combinations. For
example, press Alt-X to exit the editor and save any open files. The following table lists the
default hot keys. You can redefine the commands and keys using the Bind HotKey command
available on the Options Menu.

20 Chapter 4, Datalight Tools Reference

Table 2. Default shortcut keys

Key Function Key Function

Alt-Q Quit without saving F1 Help

Alt-X Exit, saving as needed F7 Load file into current buffer

Ctrl-A Search again F9 Save file

Ctrl-B Search backward F10 Exit asking for save as needed

Ctrl-C Copy the block to clipboard Left-Arrow Left one character

Ctrl-D Find the mark Right-Arrow Right one character

Ctrl-E Erase to end-of-line Up arrow Up one line

Ctrl-F Search forward Down arrow Down one line

Ctrl-G Go to a line number Home Beginning of line

Ctrl-I Indent the block End End of line

Ctrl-K Toggle block mode Page Up Up one screen

Ctrl-L Delete line to the clipboard Page Down Down one screen

Ctrl-M Set the mark Center (5) Center the cursor onscreen

Ctrl-N Read a file into a new buffer Ctrl-Left-
Arrow

Left one word

Ctrl-P Move to the previous position Ctrl-Right-
Arrow

Right one word

Ctrl-Q Quote the next character Ctrl-Up-Arrow Up one C function

Ctrl-R Replace text Ctrl-Down-
Arrow

Down one C function

Ctrl-S Switch to the next buffer Ctrl-Home Scroll toward beginning of file

Ctrl-T Toggle the case of character(s) Ctrl-End Scroll toward end of file

Ctrl-U Remove indent from the block Ctrl-Page Up Beginning of file

Ctrl-V Insert the clipboard Ctrl-Page
Down

End of file

Ctrl-W Delete word to the clipboard Ins Toggle Insert/Overwrite mode

Ctrl-X Delete block to the clipboard Del Delete character

Ctrl-Z Cancel the selected block Backspace Delete character backward

Alt = Start/end recording macro Ctrl-Ins Copy block to clipboard

Alt - Playback macro Ctrl-
BackSpace

Delete word backward

Alt-F7 Previous error Shift-Ins Insert the clipboard

Alt-F8 Next error Shift-Del Delete block to clipboard

Chapter 4, Datalight Tools Reference 21

PROMERGE
PROMERGE merges one or more files into an image suitable for a PROM programmer.

Syntax
 PROMERGE outfile chipsize [infile offset] [/S] [/O]

 PROMERGE @instruction file

Options
 outfile is the name of the file for the combined images.

 chipsize and offset are numbers in C, assembly, or K-byte notation (such as 0x1E3, 1E3h, 483, 8K).
A dash (-) before an offset field indicates an ending address, not a starting offset. A BIOS typically
resides at the top of memory, regardless of size.

 The /S option creates a split file with file extensions of .evn and .odd.

 The /O option allows overlap in the images. PROMERGE reports when images overlap.

Examples
PROMERGE chip.img 128k rom-dos.img 0x0 minibios.img –128k

 Merge the files rom-dos.img and minibios.img into a single file. ROM-DOS will start at address
0x0 and the miniBIOS will end at the top of the 128k address space.

 An instruction file could contain the following:
chip.img 128k rom-dos.img 0x0 minibios.img –128k

PROTO
PROTO creates function prototypes in C language and Assembly language files.

Syntax
 PROTO filename [filenames]

Remarks
 The start of the function must begin with the first character in a new line. A simple space can cause
the function prototype for this function to be overlooked. Which can be useful under certain
circumstances. In order to have PROTO create a prototype for the assembly files there must be a
multi-line comment (see below) with a c-style function description.

C language file :

 unsigned MultiplyTwoBytes(unsigned char ucValue1, unsigned char ucValue2)
{

...
}

Assembly Language (ASM)file:
comment ~
unsigned MultiplyTwoBytes(unsigned char ucValue1, unsigned char ucValue2)
{}
~
Public MultiplyTwoBytes
MultiplyTwoBytes proc
...

 MultiplyTwoBytes endp
 The prototypes are only displayed to the screen so the user can redirect them where they want.

22 Chapter 4, Datalight Tools Reference

 PROTO takes every option on the command line and assumes that it is a file name. Therefore you
can specify multiple file names on the command line. Wildcard characters are allowed in the file
names.

Examples
PROTO hello.c hello.asm >hello.h

 Create a prototype listing in the output file hello.h from the files hello.c and hello.asm.
PROTO test*.c >test.h

 Create a prototype listing in the output file test.h from all of the files matching the name mask of
test*.c in the current directory.

READMEM
READMEM reads bytes from the first one MB of system memory and stores them in a file.

Syntax
 READMEM outfile StartAddr Length

Options
 outfile designates the name of the file to store the memory dump into.

 StartAddr is the starting address for the memory dump. StartAddr should be an absolute address,
not an x86 segment.

 Length is the size of the memory area to read.

Examples
READMEM bios.img 0xF0000 64k

 Read 64KB of memory, starting at the address 0xF0000 and place the data into the file bios.img.

RECURSE
RECURSE recurses into all subdirectories in the current tree, executing the command line in each
of those subdirectories.

Syntax
 RECURSE [/r] [/e DIR] cmdline

Remarks
 The command line must include an executable program. RECURSE does not understand batch
files or DOS internal commands. To execute an internal command or batch file, use

COMMAND /C

 The RECURSE environment variable is set to the current path relative to the start of the recurse
and the RECCURDIR environment variable is set to the current directory during execution of the
RECURSE command. These variables are cleared when RECURSE completes.

Options
 /r instructs RECURSE to process the root. By default the root directory is ignored.

 /e excludes the named directory. Each directory to be excluded from the current directory tree
should have it’s own /e argument.

Examples
RECURSE COMMAND /c DIR

Chapter 4, Datalight Tools Reference 23

 Recurse the current directory tree, executing the command processor command DIR in each
directory.

RECURSE /Erelease /Etempfiles MAKE

 Run the command MAKE in each subdirectory except release and tempfiles

RESTCMOS
RESTCMOS restores the entire contents of the CMOS memory (up to 128 bytes) from the
specified file.

Syntax
 RESTCMOS filename [/C]

Remarks
 Use a file created by SAVECMOS to restore the CMOS memory. The first 16 bytes of CMOS
memory are used by the Real Time Clock and ignored by RESTCMOS.

Options
 The /C argument indicates no confirmation should be provided before overwriting the CMOS
memory.

Examples
RESTCMOS newcmos /C

 Overwrite the CMOS memory, without user confirmation, with the contents of the file newcmos.

SAVE
SAVE places values in the Permanent Command Environment such as time, date or the current
working directory.

Syntax
 SAVE [Item] [EnvSymName]

Options
 Item is one of the following: DOS, VER, DATE, TIME, DRIVE, strings, or CWD (current
working directory).

 EnvSynName is the name of the environment variable to save the specified value in.

Examples
SAVE date today

 This example will set an environment variable “today” equal to the current system date. Later a
batch file command “date %today%” could restore the current date.

SAVE dos dos

 This example will set an enviromment variable “dos” equal to the current operating system name
(ROM-DOS, MS-DOS, etc.).

SAVE “This is a test” junk

 This example will set an enviromment variable “junk” equal to the string This is a test.

24 Chapter 4, Datalight Tools Reference

SAVECMOS
SAVECMOS saves the entire contents of CMOS memory (up to 128 bytes) into the specified file.

Syntax
 SAVECMOS filename

Remarks
 RESTCMOS can be used later on to restore the CMOS memory from this file. The first 16 bytes of
CMOS memory are used by the Real Time Clock and ignored by SAVECMOS.

Examples
SAVECMOS origcmos

 Save the contents of the CMOS memory into a file called origcmos.

SAVEENV
SAVEENV saves whatever environment variables you specify to a file.

Syntax
 SAVEENV filename variable(s)

Remarks
 Saving the values of environment variables can allow you to restore them to their original values
after the completion of any procedure which could alter them.

Options
 filename is the name of the output file to save the variable information in.

 variable(s) is a spaced delimited list of environment variables that you want saved into the name
file.

Examples
SAVEENV env.out path blaster sound midi

 SAVEENV will write the environment variable information for the variables path, blaster,
sound, and midi to the file env.out:

@echo off
SET PROMPT=pg
SET BLASTER=A220 I2 D1 H1 P300 T6
SET SOUND=C:\PROGRA~1\CREATIVE\CTSND
SET MIDI=SYNTH:1 MAP:E

SETX
SETX operates in a manner similar to the standard DOS command SET, but also allows the use of
an equal sign in the string.

Syntax
 SETX [variable] [value]

Remarks
 Works similar to set under Windows NT.

Chapter 4, Datalight Tools Reference 25

Options
 variable is the name of the environment variable to set. If no variable is specified, the environment
is displayed.

 value is the string to set for variable specified. If no Value is set, then the variable is cleared from
the environment.

Examples
SETX RD SW= -1 –DDEBUG=1

 Set the environment variable RD to the string SW = -1 –DDEBUG=1.

SHOWERR
SHOWERR scans a named file for lines with “error”, “warning”, or “fatal” and displays the lines
with those messages to the screen.

Syntax
 SHOWERR filename [ignoremsgs]

Options
 The filename lists the file to be searched for the error message strings.

 The optional ignoremsgs file can contain a list of messages that should be ignored, for example,
“Error messages: None” and “Warning messages: None” that are generated by an assembler.

Examples
MAKE –B >x.y
SHOWERR x.y ignore.txt

 This example uses SHOWERR to scan an output file created by the Borland MAKE utility. The
messages found in the file ignore.txt will be not be reported.

SPLIT
SPLIT divides a single file into multiple smaller files.

Syntax
 SPLIT filename output_filesize

Remarks
 The output files is given the same name as the original file, but with consecutively numbered file
extensions.

 The files created by split can be merged together again using the DOS COPY command, for
example: copy /b file1+file2 file.out.

Options
 filename is the name of the file to be split into multiple out put files.

 output_filesize is the size of each output file.

Examples
SPLIT BIG.ZIP 8k

 Create as many 8K files as needed to split up the file BIG.ZIP. The names will be BIG.000,
BIG.001, and so on.

26 Chapter 4, Datalight Tools Reference

TIMEROFF
TIMEROFF stops the recording of time spent in an interrupt’s functions and displays the results to
STDOUT.

Syntax
 TIMEROFF

Remarks
 The programs INTIMER and TIMERON must be started prior to running TIMEROFF.

Examples
TIMEROFF

 End the timing session started by TIMERON and report the results to STDOUT. Sample output:
Timing report on interrupt 21h.

 Fn Calls Min (uS) Max (uS) Avg (uS) Total (uS)

 02h 1 68 68 68 68
 0Ah 1 11734958 11734958 11734958 11734958
 19h 4 94 65386 115 65710
 1Ah 1 102 102 102 102
 25h 8 92 114 95 778
 29h 4 96 122 103 424
 30h 1 240 240 240 240
 35h 4 94 104 96 390
 38h 1 124 124 124 124
 3Eh 15 96 104 97 1464
 40h 3 248 822 430 1292
 44h 1 114 114 114 114
 48h 4 116 146 120 502
 49h 3 112 150 124 372
 4Ah 2 122 122 117 234
 4Dh 1 144 144 144 144
 58h 2 94 100 97 194
 5Dh 2 132 168 150 300
 67h 1 142 142 142 142

TIMERON
TIMERON communicates with the resident program INTIMER to start a new timing session.
Each session records the time spent in an interrupt’s functions.

Syntax
 TIMERON

Remarks
 The INTIMER program must be started prior to running TIMERON.

Examples
TIMERON

 Start the program TIMERON to begin recording interrupt data.

Chapter 5, Pardigm Tools Reference

This chapter describes the usage of the Paradigm tools included in the SDTK.

PDCONVRT
PDCONVRT translates debug symbols in the specified file to the desired output.

Syntax
 PDCONVRT [options] filename

Options
 filename is the name of the debug file to be translated.

 The options -d0 and -Opd6 are enabled by default. Add a trailing ‘-‘ to disable an option. For
example, the option -d1- will disable file diagnostics.

Option Description

-d0 Disable Diagnostics

-d1 Enable file diagnostics

-d2 Enable module diagnostics

-M- Disable C++ name translation

-On Output filename

-Opd1 Paradigm DEBUG 1.0 output

-Opd2 Paradigm DEBUG 2.0 output

-Opd3 Paradigm DEBUG 3.0 output

-Opd4 Paradigm DEBUG 4.0 output

-Opd5 Paradigm DEBUG 5.0 output

-Opd6 Paradigm DEBUG 6.0 output

-w-Wxxx Disable warning Wxxx

-w+Wxxx Enable warning Wxxx

Examples
PDCONVRT test.map

 This example will convert the file, TEST.MAP from Microsoft debug symbols to Borland debug
symbols.

28 Chapter 5, Pardigm Tools Reference

Chapter 6, Known Issues

This chapter describes known issues concerning the Software Development Toolkit.

Datalight Tools Issues
LOC

LOC only supports single file linear ROM bios extension images.

SAVE

SAVE does not properly set environment variables for WindowsNT.

SETX

SETX does not properly set environment variables for WindowsNT.

CLEANUP

CLEANUP spawns deltree, which fails under WindowsNT.

Borland C/C++ Issues
New 32-bit Compiler Rule

The new 32-bit compiler implements a language requirement that may break some existing code.
The new rule is that you cannot pass a temporary variable by reference--you must pass it by const
reference.

For example, given a function with this prototype:
 func1 (TMyClass& o);

the following call used to be acceptable:
 func1 (TMyClass());

However, you must now change the call to:
 func1(TMyClass const & 0)

Some of the OWL examples have not been updated for this new change.

Command-Line Options

The command line compiler creates multi-threaded applications by default. The -WM option is on
by default.

If using the -i and -s command-line options together, note that the -i must precede the -s option.

30 Chapter 6, Known Issues

Compiler/Linker Errors

If you receive the following compiler and linker error messages when compiling from the
command line:

Error: Unresolved external
'TApplication::Dispatch(TEventHandler::TEventInfo&,int,long)'
 referenced from module GDIDEMO.CPP
Error: Unresolved external
'TWindow::Dispatch(TEventHandler::TEventInfo&,int,long)'
 referenced from module GDIDEMO.CPP

You are probably compiling as a multi-threaded application, but are linking with the single-
threaded OWL libraries, because multi-thread is now the default application type. To remedy this,
add -WM- to your options to turn multi-threaded targeting off.

TLIB Errors
TLIB requires that himem.sys is loaded.

Restricted Keywords

The following keywords are reserved for use in Borland C++Builder:

__automated

__classid

__closure

__dispid

__property

__published

Do not use these keywords in your Borland C++ programs.

Multiple Declarations for HSZ

If the error Multiple Declarations for HSZ is displayed, you need to edit
\BC5\INCLUDE\WN32\DDEML.H and include the following statement:

#define __DDEML_H

STL Stack

In the event you want to use a stack of vectors of bools, you must define the following before any
of the header files:

#define RWSTD_NO_BOOL

OpenHelp 6.0 Upgrade Kit

The OHELP60 directory on the CD contains files that let you upgrade to OpenHelp 6.0. If you
have C++Builder installed on the same computer as Borland C++, you already have OpenHelp
6.0. In this case, the upgrade merges the Borland C++ and C++Builder OPENHELP.INI files.

Chapter 6, Known Issues 31

See OPENHELP.HLP for information on using OPENHELP 6.0.

Upgrading to OpenHelp 6.0

If you have only Borland C++ on your computer

Run OHELPNEW.BAT. This batch file takes one parameter that specifies the drive and
directory in which BC5 is installed. Enter a colon with the drive letter, followed by the
backslash and directory name; for example, OHELPNEW C:\BC5.

 If you have Borland C++ and C++Builder on your computer

Run OHELPRPL.BAT. This batch file takes two parameters, the first of which specifies the
drive and directory in which BC5 is installed. Enter a colon with the drive letter, followed by
the backslash and directory name, such as in C:\BC5.

The second parameter specifies the drive where Borland programs are installed. Enter the
drive letter followed by a colon, such as in D: for example, OHELPRPL C:\BC5 D:

In-line Assembly

Local variables can now use the BX register. In-line assembly code that worked for previous
versions of Borland C/C++ may now destroy local variables. If this occurs, use the compiler
switch, -r-, to compile your code.

32 Chapter 6, Known Issues

Glossary

BIOS (Basic Input/Output System)
Software or firmware that deals directly with the hardware to initialize the system and prepare it for
boot up. The BIOS is usually placed in ROM at address F000:0.

BIOS Extension
A short program piece that the BIOS recognizes and executes as the BIOS initializes the system, before
an operating system is loaded. Most BIOS implementations search the memory area between locations
C800:0 and E000:0, on 4KB boundaries.

EPROM (Erasable Programmable Read-Only Memory)
Memory that is normally read-only, but can be erased and rewritten by certain devices or software.

FAT (File Allocation Table)
A data table created by DOS to keep track of where files are stored on a disk. The standard DOS disk
format is often referred to as being FAT-based or FAT-style.

Flash Memory
Flash memory is nonvolatile, low-power memory that can only be erased in large blocks but can be
read and written in bits at a time. Once programmed, an entire erase zone must be erased before it can
be changed.

GUI (Graphical User Interface)
Graphical interface as opposed to command line.

PROM (Programmable Read-Only Memory)
Memory that is normally read-only, but can be written by a programming device.

RAM (Random Access Memory)
Memory that can be read from and written to on a byte-by-byte basis.

34 Glossary

